Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes
نویسندگان
چکیده
Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.
منابع مشابه
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics
Gut microbiota are intricately involved in the development of obesity-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance. In the current review, we discuss the role of gut microbiota in the development of NAFLD by focusing on the mechanisms of gut microbiota-mediated host energy metabolism, insulin resistance, regulation of bile ...
متن کاملSystems biology of host–microbe metabolomics
The human gut microbiota performs essential functions for host and well-being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health-relevant metabolites being considered 'mammalian-microbial co-metabolites'. To systematically investigate this complex ...
متن کاملCross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. Th...
متن کاملNew Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease
Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...
متن کاملThe Role of Microbial Amino Acid Metabolism in Host Metabolism
Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015